Homework for week 1 and 2

September 16, 2023

1. Show that the 4 D volumn element is invariant under Lorentz transformation:

$$
\begin{equation*}
d^{4} x=d^{4} x^{\prime} \tag{1}
\end{equation*}
$$

2. Show that under a Lorentz transformation,

$$
\begin{equation*}
\frac{d^{3} k}{2 \omega_{k}} \rightarrow \frac{d^{3} k^{\prime}}{2 \omega_{k}^{\prime}} \tag{2}
\end{equation*}
$$

namely, it's also Lorentz invariant.
3. Show that the action for a free Klein-Gordon field is invariant for Lorentz transformation Λ, where $\operatorname{det}(\Lambda)=1$.
4. Explain why we don't need a linear term of ϕ in the Lagrangian for a free Klein-Gordon field.
5. In d space-time dimension, what is the dimension of the following Lagrangian? What is the dimension of a_{n} ?

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\sum_{n=2}^{\infty} a_{n} \phi^{n} \tag{3}
\end{equation*}
$$

6. A space-time translation operator $T(a)$ is defined as $T(a)=\exp \left(i a^{\mu} P_{\mu}\right)$, where P_{μ} is the momentum operator. Show that $T(a)$ is unitary. A scalar field transforms under $T(a)$ as $T(a)^{\dagger} \phi(x) T(a)=\phi(x-a)$.

- Let a^{μ} be infinitesimal. Derive an expression for $\left[P^{\mu}, \phi(x)\right]$.
- Show that the time component of your result is equivalent to the Heisenberg equation of motioni $\dot{\phi}=i[H, \phi]$.
- For a free field, use the Heisenberg equation to derive the KleinGordon equation.
- Define a spatial momentum operator

$$
\begin{equation*}
\boldsymbol{P}=-\int d^{3} x \pi(x) \boldsymbol{\nabla} \phi(x) \tag{4}
\end{equation*}
$$

Use the canonical commutation relations to show that \boldsymbol{P} obeys the relation you derived in part (a).

- Express \boldsymbol{P} in terms of $a_{\boldsymbol{k}}$ and $a_{\boldsymbol{k}}^{\dagger}$.

7. The time-ordered product of two fields, $A(x)$ and $B(y)$, is defined by

$$
\begin{equation*}
T[A(x) B(y)]=\theta\left(x^{0}-y^{0}\right) A(x) B(y)+\theta\left(y^{0}-x^{0}\right) B(y) A(x) \tag{5}
\end{equation*}
$$

Using only the field equation and the equal time commutation relations, show that, for a free scalar field of mass m,

$$
\begin{equation*}
\left(\partial_{x}^{2}+m^{2}\right)\langle 0| T[\phi(x) \phi(y)]|0\rangle=c \delta^{(4)}(x-y) \tag{6}
\end{equation*}
$$

Find the constant c.
8. Considering the following Lagrangian:

$$
\mathcal{L}=i \psi^{*} \partial_{0} \psi+b \nabla \psi^{*} \cdot \nabla \psi
$$

where ψ is a complex scalar field and b is a real constant.

- Find the Euler-Lagrange equations.
- Find the plane-wave solutions, those for which ψ is of the form $\psi=$ $e^{-i \omega t+i \boldsymbol{p} \cdot \boldsymbol{x}}$, and find ω as a function of \boldsymbol{p}.
- Although this theory is not Lorentz-invariant, it is invariant under spacetime translations and the internal symmetry transformation

$$
\psi \rightarrow e^{-i \alpha} \psi, \quad \psi^{*} \rightarrow e^{i \alpha} \psi^{*}
$$

Thus it possesses a conserved energy, a conserved linear momentum, and a conserved charge associated with the internal symmetry. Find these quantities as integrals of the fields and their derivatives. Fix the sign of b by demanding the energy be bounded below.

- Canonically quantize the theory. Identify appropriately normalized coefficients in the expansion of the fields in terms of plane wave solutions with annihilation and/or creation operators. Write the energy, linear momentum and internal-symmetry charge in terms of these operators.
- Find the equation of motion for the single particle state $|\boldsymbol{k}\rangle$ and the two particle state $\left|\boldsymbol{k}_{1} \boldsymbol{k}_{2}\right\rangle$ in the Schordinger Picture. What physical quantities do b and the internal symmetry charge correspond to?

